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Abstract

In this paper we describe two processor-efficient implementation of the Maximum Distance
Discharge algorithm for the maximum flow problem. Using p = O(y/m) processors, the first
implementation runs in O(n?log(2m/n + p)(/m/p)) time and uses O(m + n log n) space; the
second implementation runs in O(n?logn(,/m/p)) time and uses O(m + plog n) space. These
bounds are within a logarithmic factor of the O(n?,/m) time and O(m + n) space bounds on
the sequential Maximum Distance Discharge Algorithm.

1 Introduction

The maximum flow problem is a classical combinatorial optimization problem, which has been
widely studied in the context of sequential computation (see e.g. (7, 12]). Recently, parallel algo-
rithms for the problem have been studied as well. Although the problem is known to be P-complete
[14], significant speedups can be obtained by using a parallel algorithm for the problem, both in
theory and in practice [11].

The first parallel algorithm for the maximum flow problem is due to Shiloach and Vishkin [18].
This algorithm is based on the blocking flow method of Dinic [6] and runs in O(n?log n) time using
n processors and O(n?) memory.! In [10}, the author introduced the first-in. first-out ( FIFO) algo-
rithm that runs in the same time and processor bounds but uses O(m) of memory. This algorithm
is the first of the push-relabel maximum flow algorithms. The push-relabel method was developed
by Goldberg and Tarjan [13] as a generalization of it. The mazimum distance discharge (MDD)
algorithm [13] is another variation of the generic push-relabel method. A parallel implementation

of this algorithm similar to that of the FIFO algorithm achieves the same asymptotic resource
bounds [13].

The original sequential running time bound for both the FIFO and the MDD algorithms was
O(n?). Cheriyan and Macheshwari [3] show that this bound is tight for the F/FOalgorithm (i.e., the
algorithm requires Q(n?) time in the worst case), whereas for the MDD algorithm the bound can be
improved to O(n?y/m). Thus an n-processor, O(n? log n)-time parallel implementation is reasonable
for FIFO algorithm since the corresponding time-processor product is within a logarithmic factor
of the sequential time bound. However, such an implementation is not as good for the MDD
algorithm, since the time-processor product exceeds the sequential running time bound by a factor

of O((n/\/m)logn), which is quite large for sparse graphs.

In this paper we describe an implementation of the MDD algorithm that runs in O(n?log n))
time using \/m processors and O(m + nlogn) memory. Using p = O(\/m) processors, the imple-
mentation runs in O(n?log(2m/n + p)(/m/p)) time. A variation of this implementation that uses
the same number of processors and O(m 4+ plogn) memory runs in O(n?log n(y/m/p)) time. These
are the best strongly polynomial bounds for a processor-efficient maximum flow algorithm. (If the

'Throughout this paper. n and m denote the number of vertices and the number of arcs in the input network.




capacities are integers bounded by U, a parallel implementation of a scaling version of the push-
relabel method, due to Ahuja and Orlin [1], runs in O(n2log(U)logn) time using m/n processors
and O(m) memory.) The techniques and data structures used in our implementation may be useful
for obtaining processor-efficient implementations of other graph algorithms.

Processor-efficient algorithms for the bipartite matching problem, which is closely related to
the maximum flow problem, are discussed in [9].

2 Background

We use the following definitions. Let G = (V, E) be a directed graph with vertex set V of size n
and arc set E of size m. For ease in stating time bounds, we assume that m > n and therefore

log(m/n) > 0. Define E-! = {(w,v)|(v,w) € E} and E+ = E|JE-'. For any vertex w we
denote by E(w) the set of vertices adjacent out from w, E(w) = {z|(w,z) € F}, and by E~(w)
the set of vertices adjacent into w, E-'(w) = {v|(v,w) € E}. Graph G is a network if it has
two distinguished vertices, a source s and a sink ¢, and a nonnegative real-valued capacity u(v,w)
on every arc (v,w). A preflow on a network is a nonnegative real-valued function f on the arcs
such that f(v,w) < u(v, w) for every arc (v, w) and LveE-1(w) f(v, W) 2 Frepw) f(w,2) for every
vertex w # s. The quantity es(w) = 2veE-1(w) f(v, W) = Y sep(w) f(w,z) is called the excess at
vertex w. A preflow f is a flow if es(w) = 0 for every vertex w ¢ {s,t}. A cost functionc: FE — R
assigns a cost to arcs of the network. We assume that costs are integers in the rahge -C,...,C].
The residual capacity of an arc (v, w) with respect to a preflow fis ug(v,w) = u(v,w) — f(v,w).
Arc (v, w) is saturatedif us(v, w) = 0 and residual if us(v,w) > 0. A value of a flow f is the excess
of the sink ef(t). The mazimum flow problem is to find a flow of the biggest value.

To get slightly better running time bounds, we sometimes assume, without loss of generality,
that the maximum degree of a vertex in the input graph is at most A = 2m/n. To justify this
assumption, consider an arbitrary graph and replace each vertex v with degree deg{v) > A by
k = [deg(v)/(A — 2)] vertices vy,...,v) connected in a ring with arcs of a very high capacity (e.g.
the sum of all original capacities). Distribute arcs of v along v1,..., v so that the degree of the
new vertices is bounded by A. If the original graph has n vertices and m arcs, the transformed
graph has at most 2n vertices and m + n arcs.

Our model of parallel computation is the concurrent-read, ezclusive-write parallel random aceess
machine (CREW PRAM) [8]. We will use the fact that in this model, given a list of size / and
p 2 | processors, ranking the list. doing a parallel prefiz computation on the list, and sorting the
list takes O(log!) time [4, 5, 15, 17].




push(v, w).

Applicability: v is active and (v, w) is admissible.

Action: send 6 € (0, min(es(v), us(v, w))] units of flow from v to w.

relabel(v).

Applicability: either s or t is reachable from v in Gy and Yw € V uy(v,w) = 0 or d(w) > d(v).
Action: replace d(v) by min, w)eg, {d(w)} + 1.

Figure 1: The push and relabel operations.

3 The Push and Relabel Operations

In this section we review the push and relabel operations. See [13] for more details.

To describe these operations, we need the following definitions. For a given preflow f, a distance
labeling is a function d from the vertices to the nonnegative integers such that d(t) = 0, d(s) = n,
and d(v) < d(w) + 1 for all residual arcs (v, w). We say that a vertex v is active if v ¢ {s,t} and
es(v) > 0. Note that a preflow f is a flow if and only if there are no active vertices. An arc (v, w)
is admissible if (v,w) € Ey and d(v) = d(w) + 1.

The push-relabel method maintains a preflow f and a distance labeling d, which are modified
using the push and the relabel operations, respectively. A push from v to w increases f(v,w) and
ef(w) by 6 = min{ey(v),us(v,w)}, and decreases f(w,v) and es(v) by the same amount. The
push is saturating if us(v, w) = 0 after the push and nonsaturating otherwise. A relabel operation,
applied to a vertex v, sets the label of v equal to the largest value allowed by the valid labeling
constraints. The basic operations are summarized in Figure 1.

The generic push-relabel method initializes f and d and repetitively performs an applicable push
or relabel operation. When no operation applies, the method terminates. During initialization, f
is set to the arc capacity on each arc leaving the source and zero on all arcs not incident to the

source. The distance labeling is initialized as follows: d(s) = n and d(v) =0 for v € V — {s}. A
summary of the algorithm appears in Figure 2.

The generic method has the following properties [13]:

- o The algorithm always terminates with a maximum flow.
o The number of relabel operations used is O(n?) and the total cost of these operations is O(nm).

e The number of saturating push operations and the total cost of these operations is O(nm).

The number of nonsaturating push operations and the total cost of these operations is O(n?m).
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procedure generic (V, E, u);
[initialization]
V(v,w) € E do begin
f(v,w) < 0;
if v=s then f(s,w) — u(s,w);
if w=s then f(v,s) — —u(s,v);
end;
Yw € V do begin
ef(w) A E(u,w)eE f(vv w);
if w= s then d(w) = n else d(w) = 0;
end;
[loop]
while 3 an active vertex do
select an update operation and apply it;

return(f);
end.
Figure 2: The generic maximum flow algorithm.
discharge(v).
Applicability: v is active.
Action: while ef(v) > 0 and v is not relabeled do

if 3 an admissible arc (v, w)
then push(v, w)
else relabel(v);

Figure 3: The discharge operation.

4 The Maximum Distance Discharge Algorithm

The generic algorithm does not specify the ordering in which the basic operations are applied.
- Some orderings, however, are more efficient then others. In this section we describe an ordering
of the operations that leads to an O(n?,/m)-time sequential algorithm. As we shall see later, this
algorithm has a substantial degree of parallelism. Since parallel algorithms are of main concern
here, we omit low-level detail of the sequential algorithm in our description. These details can be
found in 12, 13].

The 'di'schar;ge operation, described in Figure 3, combines the basic operations locally (at a
vertex). The dz'scharge operation is applicable to an active vertex v. This operation iteratively
reduces the excess at v by pushing it through admissible arcs going out of v if such arcs exist:
otherwise, discharge relabels v. The operation stops when the excess at v is reduced to zero or v is
relabeled. Note that discharge relabeles v only when the relabel operation applies.

The second step to an efficient ordering of basic operation is to restrict the order of processing
of active vertices. The MDD algorithm always selects for discharging an active vertex with the




procedure process-verter;
remove a vertex v from Bj;
old-label — d(v);
discharge(v);
add each vertex w made active by the discharge to Baw)s
if d(v) # old-label then begin
b — d(v);
add v to By;
end
else if By = 0 then b — b — 1;
jend.

Figure 4: The process-vertez procedure.

largest label. The corresponding parallel algorithm processes all such vertices at once.

The sequential implementation of the largest-label algorithm maintains an array of sets B;,
0 < ¢ < 2n -1, and an index b into the array. Set B; consists of all active vertices with label
i, represented as a doubly-linked list, so that insertion and deletion take O(1) time. The index b
is the largest label of an active vertex. During the initialization, active vertices are placed in By,
and b is set to 0. At each iteration, the algorithm removes a vertex from By, processes it using
the discharge operation, and updates b. The algorithm terminates when b becomes negative, i.e.,
when there are no active vertices. This processing of vertices, which implements the while loop of
the generic algorithm, is described in Figure 4.

We define a phase of the algorithm as a maximal time interval during which b remains constant.
The notion of phase is important both for the sequential and the parallel analysis of the algorithm.

Lemma 4.1 [13] The number of phases during an execution of the MDD algorithm is O(n?).
The following theorem gives the sequential running time bound for the algorithm.
Theorem 4.2 [3] The MDD algorithm runs in O(n?y/m) time.

Lemma 4.1 suggests a parallel version of the algorithm, where all largest-labeled active vertices
are processes in parallel. The running time of the resulting algorithm is O(n?) times the time needed
for the parallel processing of the vertices. The next section describes such an implementation.

5 A Processor-Efficient Parallel Implementation

Straight-forward implementations of parallel maximum flow algorithms, described in (L1, 18]. use
a lincar number of processors. Shiloach and Vishkin [18] show that their algorithm can be imple-

mented with n processors and O(n?) space and still achieve the O(n?%logn) time bound. In this




section we extend their techniques to obtain a parallel implementation of the MDD algorithm that
uses /m processors, runs in O(n?logn) time, and needs O(m + nlogn) space. Using p = O(y/m)
processors, the implementation runs in O(n?log(A+p))(y/m/p) time. The time-processors product
of this paralle] implementation is within a logarithmic factor of the number of operations of the
underlying sequential method. A variation of this implementation achieves a slightly better space
bound at the expense of a slightly worse time bound.

To obtain a processor-efficient implementation of the algorithm, we have to provide a mechanism
for assigning the work to processors in such a way that most processors are busy most of the time.
Doing this scheduling “on-line” is the biggest problem our implementation has to overcome.

The implementation maintains the sets B; of active vertices with the distance label ¢, for
0 < i< 2n—1. The index b is maintained as in the sequential implementation. The sets are
maintained so that in O(logp) time, several processors can add a vertex each to the sets, and
several elements of By, can be assigned to different processors and removed from the set.

A straight-forward way to implement these operations is to use an array of length n for each
set. The elements of B; occupy the first |B;| locations of the corresponding array. The processors
that want to add elements to |B;| are enumerated and add their elements to the array position
determined by their rank and |B;|; after this is done, | B;| is updated. To assign elements of B, to a
set of processors of size k < By, the processors are ranked and assigned elements starting from the
end of the corresponding array. Then B, is decreased by k. This straightforward implementation
meets the desired time bound but uses O(n?) space.

To reduce the space requirement, we take advantage of the fact that the total number of elements
in all sets B; is at most n. . We discuss two parallel data structures that can be used to maintain
sets B; in a space-efficient way.

One such data structure is a dynamic array. A dynamic array consists of an ordered list of
segments. If the dynamic array contains k elements, the number of segments in the list is [log k] +1.
Each segment is an array; the length of the first two segments is 1, and for j > 2, the length of the

jth segment is 2/=1. Note that more than half of the space allocated to the nonempty segments is
actually used and all segment are of size at most n. Using this observation, it is easy to see that

the total space required is O(nlogn).

We can implement the lists of segments by arrays of pointers to the segments. These arrays take
O(nlogn) space. The time required for / processors to add elements to the sets B; or to remove !
elements from By is O(log!) (using sorting or ranking of processors operating on the same set).

Alternatively, we can use the parallel 2-3 tree data structure described in [16]. This data
structure allows addition (deletion) of | elements by ! processors to (from) a set of k elements in
O(log k + log ) time and O(k + llogk) space. In our application £ < n and | < p = O(n), so the

bounds can be rewritten as O{logn) time and O(n + plogn) space.

Our implementation of the MDD algorithm works in iterations, each of which implements a




pass of the sequential algorithm. Each iteration is divided into three phases. During the first phase
flow is pushed out of the active vertices in B;. During the second phase this flow is collected at the
destination vertices. The last phase relabels the appropriate vertices.

For the purpose of scheduling, one has to keep track of the number of processors needed to
perform a relabel or a discharge operation. In the sequential algorithm, the number steps required
to relabel a vertex v is linear in the degree of v, so in the parallel implementation we assign for this
operation the number of processors equal to the degree of v. Discharging a vertex v requires the
number of processors equal to the number of pushes performed during the discharge. We maintain
a data structure at each vertex that allows fast computation of this number by a single processor.
This data structure is also used for pushing the flow.

The data structure we use is a variant of the partial sum tree data structure [18]. A partial sum
tree is a balanced binary tree with leaves corresponding to edges adjacent to a vertex. Each vertex
v has two trees associated with it, the out-tree(v) which is used to push flow out of the vertex, and

the in-tree(v) which is used to collect flow pushed into the vertex.

The out-trees are used in the first phase. Leaves of the out-tree(v) correspond to the arcs (v, w).
Each node z of the tree has two labels, a(z) and b(z). The label values are defined as follows. If z

is a leaf corresponding to the arc (v, w), then

a(z) = ug(v,w)) if (v,w)is admissible
710 otherwise
and
_} 1 if (v, w)is admissible
b(z) = { 0 otherwise.

If = is not a leaf, then a(z) and b(z) are equal to the sums of the corresponding values of the
children of z. In other words, a(z) is equal to the sum of residual capacities of the admissible arcs

corresponding to the leaves of the subtree rooted at z, and b(z) is the number of such admissible
arcs.

Suppose v is an active vertex to be discharged. First a processor is assigned to v to determine
the number of pushes p(v) which will be made out of v. Using @ and b values of out-tree(v) and the
value of e;(v), this can be done in O(log A) time.

To push the flow out of v, we assign p(v) processors to v. Then we associate each processor
with the arc it will push the flow through. To do this, we rank the processors assigned to v,
which takes O(logp) time. Then each processor goes down the tree starting from the root and
picking at each step the left or the right child of its current node z depending on the processor’s
rank and on the b values of the children of z. At the end, the ith processor will be at the leaf
corresponding to the 7th admissible arc of v. Note that this process requires concurrent read. Then
each of the processors computes the amount é(v.w) to be pushed along the arc corresponding to

the processor. For all but the last processor assigned to v, this amount is equal to us(v.w). since




the corresponding pushes are saturating. For the last processor, this amount is equal to uys(v,w) if
a(roof{ out-tree(v))) < ef(v) and to a(root(out-tree(v))) — es(v) otherwise. The processors update
the flow function on the corresponding arcs and the last processor updates es(v).

Next the out-trees are updated going from the bottom level of the tree up. Initially each
processor updates the @ and b labels at the leaf assigned to it. Then the processor decides if it will
stop updating or not. The processor stops the update only if it is currently at the root of the tree
or if it is at a tree node z which is a right son of its father y, and the left son of y has just been
updated, i.e., also has a processor working on it. The process is repeated until the root of the tree
is reached and updated.

In the second stage, the flow pushed into vertices w is collected using the in-trees. Leaves of
in-tree(w) correspond to arcs entering w. A processor that was assigned to the arc (v, w) when
pushing flow out of v is assigned to the same arc when processing the flow pushed into w. Every
node z of in-tree(w) has a variable «/(z) associated with it. If z is a leaf corresponding to an arc
(v, w), then a’(z) is set to the amount equal to that just pushed along the arc. If z is not a leaf,
then a’(z) is equal to the sum of the values of the corresponding variables of its children. The
values of @’ variables are propagated going from the leaves to the root in the same way as the
values of a variables of the out-trees. The update takes O(log A) time. After the update, ef{w) is
increased by a'(in-tree(roof(v))). Then the values of «’ varla.bles are reinitialized to 0 by making

another leaves-to-root pass.

Relabelings are implemented by maintaining an array of vertices to be relabeled. (Note that
this array has at most n items). Vertices that were unable to get rid of their excesses during a
discharge are added to the end of the array using ranking of the processors that want to add the
vertices to the array. During the relabeling stage, processors are assigned to the last p elements
of the array or to every element of the array if there are less then p elements in it. Using parallel
prefix computations on the portion of the array for which the processors have been assigned, vertices
needing relabeling are assigned the number of processors equal to their degrees, and the relabeling
is performed by doing a parallel prefix computation on edge list of every vertex that needs to be
relabeled.

The analysis is based on the following theorem of Brent.

Theorem 5.1 [2] Any synchronized parallel algorithm of depth d that consists of a total of = elementary
operations can be implemented by p processors within a depth of [z/p] + d.

Let macro-operations be any standard unit-time PRAM operation plus sequences of operations
performed by individual processors while working on an in-tree or an out-tree or performing an
operation of ranking, sorting, or computing parallel prefix. Note that the macro-operations used
by the algorithm take O(log(A+p)) time. By Lemma 4.1, the depth of the algorithm is O(n?) macro-
operations. The total number of macro-operations used by the algorithm is O(n?,/m). Applving
Theorem 5.1 for p = O(\/m) and using the fact that each macro-operation takes Oflog(N + p))



time. we get the following result.

Theorem 5.2 The parallel implementations of the A/DD algorithm run in O(n?log(2m/n+p)(vVm/p))
time using p = O(\/m) processors and O(m + nlogn) memory, or in O(n?log n(y/m/p)) time using
" p = O(\/m) processors and O(m + plogn) memory.

Note that the time bounds in the above theorem exceed those with optimal processor utiliza-
tion by a factor of O(logn). The amount of space required by the implementations is (slightly)
superlinear. The latter fact is due to the space requirements of the dynamic array or par allel 2-3
tree data structures.

We conclude with the following open question: Can the MDD algorithm be implemented to run

in O(n?log n(/m/p)) time using p = O(/m) processors and a linear amount of memory?
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